功能区脑胶质瘤面临两大挑战:即如何最大程度的切除肿瘤和脑功能保护。2009年中国恶性胶质瘤诊断和治疗共识[1]和美国中枢神经系统肿瘤治疗指南[2]均强类推荐,胶质瘤治疗的首要步骤是采取手术实现影像学的“最大程度安全切除(Maximal Safe Resection)”。目前已有充分的临床循证医学证据(Ia级)证实:无论是低级别脑胶质瘤[3, 4]还是高级别脑胶质瘤[5-7],“最大程度切除”均有助于延缓复发,延长生存时间,提高生存率;“最大程度安全”则有助于降低致残率,提高生活质量[8-10]。随着社会的发展,脑肿瘤患者对生活质量的要求日益增高。基于此,当前国际上主体趋势正由“最大范围切除”优先(Maximal Resection),向“最大程度安全”优先(Maximal Safe)转变,其前提则是术中脑结构与功能的精确定位。由于个体差异、脑功能重塑及移位,传统解剖标志定位并不可靠[11]。联合术前和术中多项新技术(包括:导航、iMRI、术中神经电生理监测以及唤醒麻醉等)进行精确的脑功能定位是神经外科手术的巨大进步。目前对运动皮质和皮质下运动通路的功能定位已实用于临床[9, 12],但脑语言(尤其是汉语)功能定位技术仍不成熟[13]。上海华山医院神经外科吴劲松
比较美国CBTRUS 2008年(2000-2004年入组病例)[14]和2011年(2004-2007年入组病例)[15]的统计数据,我们惊喜地发现脑胶质瘤的临床疗效正在逐步改善:GBM的5年和10年存活率由3.4%和2.4%提升至4.75%和2.8%;星形细胞瘤的5年和10年存活率由37.5%和31.4%提升至48.16%和39.10%;少枝胶质瘤的5年和10年存活率由71.9%和56.1%提升至79.48%和63.58%。虽然影响脑胶质瘤病人生存期是多因素,但肿瘤切除程度的提高有可能是主要原因之一[16]。
未来脑胶质瘤治疗的发展将向个体化医疗(Patient-Specific Therapy)转变,其中包括了个体化手术、个体化放疗和个体化药物(personalized medicine)等综合措施。可以预见,iMRI实时影像技术、计算机三维可视化技术、脑高级功能定位的电生理技术、高通量微列基因芯片与微流控芯片技术、分子影像技术、纳米技术、患者特异性肿瘤标记物测定以及靶向制剂等技术均有望成为攻克脑胶质瘤临床治疗难题的有效武器。
1. 中华医学会神经外科学会肿瘤学组. 中国中枢神经系统恶性胶质瘤诊断和治疗共识; 2009.
2. Brem SS, Bierman PJ, Black PM. NCCN Clinical Practice Guidelines in Oncology-v.1.2009: Central Nervous System Cancers. 04/272009. www.nccn.org.
3. Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg, 2001, 95:735-745.
4. Shaw EG, Wisoff JH. Prospective clinical trials of intracranial low-grade glioma in adults and children. Neuro Oncol, 2003, 5:153-160.
5. Hentschel SJ, Lang FF. Current surgical management of glioblastoma. Cancer J, 2003, 9:113-125.
6. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg, 2001, 95:190-198.
7. Laws ER, Parney IF, Huang W, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg, 2003, 99:467-473.
8. Duffau H, Capelle L. Preferential brain locations of low-grade gliomas. Cancer, 2004, 100:2622-2626.
9. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery, 2007, 61:935-948; discussion 948-939.
10. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med, 2008, 358:18-27.
11. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol, 2005, 4:476-486.
12. Keles GE, Lundin DA, Lamborn KR, et al. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg, 2004, 100:369-375.
13. Giussani C, Roux FE, Ojemann J, et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery, 2010, 66:113-120.
14. CBTRUS (2008). Statistical Report: Primary Brain Tumors in the United States, 2000–2004. Published by the Central Brain Tumor Registry of the United States.
15. CBTRUS (2011). Statistical Report: Primary Brain Tumors in the United States, 2004–2007. Published by the Central Brain Tumor Registry of the United States.
16. 吴劲松, 毛颖. 脑胶质瘤手术理念和研究热点. 中国神经精神疾病杂志, 2009, 35:376-377.